Oxyntomodulin increases intrinsic heart rate in mice independent of the glucagon-like peptide-1 receptor.
نویسندگان
چکیده
Oxyntomodulin (OXM), a postprandially released intestinal hormone, inhibits food intake via the glucagon-like peptide-1 receptor (GLP-1R). Although OXM may have clinical value in treating obesity, the cardiovascular effects of OXM are not well understood. Using telemetry to measure heart rate (HR), body temperature (Tb), and activity in conscious and freely moving mice, we tested 1) whether OXM affects HR and 2) whether this effect is mediated by the GLP-1R. We found that peripherally administered OXM significantly increased HR in wild-type mice, raising HR by >200 beats/min to a maximum of 728 +/- 11 beats/min. To determine the extent to which the sympathetic nervous system mediates the tachycardia of OXM, we delivered this hormone to mice deficient in dopamine-beta-hydroxylase [Dbh(-/-) mice], littermate controls [Dbh(+/-) mice], and autonomically blocked C57Bl mice. OXM increased HR equally in all groups (192 +/- 13, 197 +/- 21, and 216 +/- 11 beats/min, respectively), indicating that OXM elevated intrinsic HR. Intrinsic HR was also vigorously elevated by OXM in Glp-1R(-/-) mice (200 +/- 28 beats/min). In addition, peripherally administered OXM inhibited food intake and activity levels in wild-type mice and lowered Tb in autonomically blocked mice. None of these effects were observed in Glp-1R(-/-) mice. These data suggest multiple modes of action of OXM: 1) it directly elevates murine intrinsic HR through a GLP-1R-independent mechanism, perhaps via the glucagon receptor or an unidentified OXM receptor, and 2) it lowers food intake, activity, and Tb in a GLP-1R-dependent fashion.
منابع مشابه
Oxyntomodulin increases intrinsic heart rate through the glucagon receptor
Two hormones from the gastrointestinal tract, glucagon and oxyntomodulin (OXM), vigorously elevate the intrinsic heart rate (IHR) of mice. We have previously shown that OXM influences murine heart rate (HR) independent of the glucagon-like peptide 1 (GLP-1) receptor. Here, we demonstrate using radiotelemetry in mice deficient in the glucagon receptor (Gcgr -/-) that both OXM and glucagon requir...
متن کاملDifferential effects of oxyntomodulin and GLP-1 on glucose metabolism.
Glucagon-like peptide-1 (GLP-1) and oxyntomodulin (OXM) are peptide hormones secreted postprandially from the gut that stimulate insulin secretion in a glucose-dependent manner. OXM activates both the GLP-1 receptor (GLP1R) and the glucagon receptor (GCGR). It has been suggested that OXM acutely modulates glucose metabolism solely through GLP1R agonism. Because OXM activates the GLP1R with lowe...
متن کاملAction and therapeutic potential of oxyntomodulin☆
Oxyntomodulin (OXM) is a peptide hormone released from the gut in post-prandial state that activates both the glucagon-like peptide-1 receptor (GLP1R) and the glucagon receptor (GCGR) resulting in superior body weight lowering to selective GLP1R agonists. OXM reduces food intake and increases energy expenditure in humans. While activation of the GCGR increases glucose production posing a hyperg...
متن کاملDirect Control of Brown Adipose Tissue Thermogenesis by Central Nervous System Glucagon-Like Peptide-1 Receptor Signaling
We studied interscapular brown adipose tissue (iBAT) activity in wild-type (WT) and glucagon-like peptide 1 receptor (GLP-1R)-deficient mice after the administration of the proglucagon-derived peptides (PGDPs) glucagon-like peptide (GLP-1), glucagon (GCG), and oxyntomodulin (OXM) directly into the brain. Intracerebroventricular injection of PGDPs reduces body weight and increases iBAT thermogen...
متن کاملOxyntomodulin differentially affects glucagon-like peptide-1 receptor beta-arrestin recruitment and signaling through Galpha(s).
The glucagon-like peptide (GLP)-1 receptor is a promising target for the treatment of type 2 diabetes and obesity, and there is great interest in characterizing the pharmacology of the GLP-1 receptor and its ligands. In the present report, we have applied bioluminescence resonance energy transfer assays to measure agonist-induced recruitment of betaarrestins and G-protein-coupled receptor kinas...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- American journal of physiology. Regulatory, integrative and comparative physiology
دوره 292 2 شماره
صفحات -
تاریخ انتشار 2007